"Conventional" Energy Technologies: What does the future hold?

Lawrence H. Dubois SRI International Menlo Park, CA

The United States Energy Market

Coal and natural gas will remain key sources of electricity in the US for the foreseeable future

Energy Information Administration/US Department of Energy (2003)

Energy Transformation Mechanisms

Why Coal?

- » Energy generation cost is low and the price of coal is stable
 - Coal: \$1.20 / million BTU (23 of the 25 power plants with the lowest operating costs burn coal)
 - Natural gas: \$4.30 / million BTU
 - Oil: \$4.45 / million BTU

- » US has more than a 250-year supply of coal, which contains more energy than that of all the world's oil reserves
 - US can become an energy exporter
- » Despite its abundance and low cost, coal is a major source of greenhouse gases and heavy metal pollutants
 - Government has pledged \$2 billion over 10 years to advance clean coal technology

- » Direct conversion of carbon to electricity *no combustion*
- » Efficient (>70% efficient, 2X conventional coal-fired plants)
- » Inherently reliable (few moving parts)
- » Quiet
- » Zero air emission
 - High-purity by-product CO₂ stream is captured internally for use or disposal – less greenhouse gases than natural gas fired plants
- » Cost-competitive with coal fired power plants
 - Scalable, factory-built modules

High-Temperature and High-Pressure Natural Gas Fired Turbine

- » Burns methane and oxygen
 - Highest heating value of any hydrocarbon
 - Contaminant free fuel
- » Clean combustion
 - Near zero emissions (no NOx, SOx, etc.)
 - Pure CO₂ product can be readily sequestered
- » High efficiency (>50% possible) due to high operating temperature (1500 °C) and pressure (>400 atm)

Advanced Modular Pebble Bed Reactor for Nuclear Power Generation

- » Low enrichment (8%) SiC/UO₂ fuel pellets
 - Lower cost
 - Reduces proliferation threat
 - Spent fuel more easily stored
- » 1000°C core temperature for high efficiency operation
 - High fuel burnup minimizes fuel reprocessing
- » Inherently safe design using He gas
 - Stable
 - Cannot "melt-down"
- » Cost competitive with natural gas (3.3 vs. 3.4 ¢/kWh)
 - Modular factory construction
 - Refueled by adding "pebbles" ⇒ high up-time
 - Low manpower and operation and maintenance costs

Challenges Ahead

» Research, development and demonstration costs

- High temperature, corrosion-resistant materials
- System integration, system demonstration
- » Fuel sources
 - Nuclear proliferation
 - Drilling / digging for coal, natural gas
- » Environmental concerns
 - Greenhouse and toxic gas emissions
 - Toxic and hazardous waste disposal
- » Realistic, profitable business model

Challenges with Renewable Technologies for Large-Scale Power Generation

» Citing

- 1000 MW_e plant requires 2500 km² of biomass or a 750 km² wind farm or 150 km² of photovoltaic cells
- Power distribution
- » Materials cost
 - Natural gas-fired plant uses 3 m-tons of steel and 27 m³ of concrete/Mw_e vs. 460 m-tons of steel and 870 m³ of concrete for a comparable wind energy system
- » Energy payback time
 - >5 years for silicon photovoltaic cells
- » Research and development costs, business model, etc.

Can Nanotechnology Help?

- » Lightweight, high-strength, high-temperature materials for turbines, heat exchangers, packaging, etc.
- » High performance, corrosion-resistant coatings for turbines, heat exchangers, packaging,
- » Advanced materials for improved fuel cell catalysts, electrolytes, separator plates, seals,
- » Selective catalysis for more energy efficient processing (e.g., improved yield, higher selectivity,)
- » Membranes for gas separation, purification,
- » Nanomaterials for CO₂ and hazardous waste sequestration
- » Nanoenabled sensors for environmental, safety and process monitoring

